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The inductively coupled plasma (ICP) has over the past decade

developed into a powerful tool for multielement analysis by atomic

emission spectrometry (AES) (1-3). Despite its widespread use, ICP-AES

remains limited in routine applications by sample introduction methods

that require large volumes of aqueous solutions. Considerable impetus

has existed and continues for the development of ICP sample introduction

techniques capable of accepting either solid samples or very small

quantities of solutions. Previous efforts in this direction have encom-

passed a wide variety of techniques, including direct aspiration of

powders into the plasma (4-8), spark or arc sampling (9-11), laser

vaporization (12,13), aspiration of microliter quantities of solution

(14,15), electrothermal atomization (16-20), and direct insertion of a

graphite-cup sample holder into the base of the ICP discharge (21-24).

In this preliminary comunication we describe a new method for the

analysis of solids and microsamples by ICP-AES. The new method paral-

lels the direct insertion methods mentioned above; however instead of

the sample being transported to the plasma, the plasma is brought to the

sample. Initial experiments described here indicate that the method is

capable of sampling a wide range of elements in solid form and can be

applied to solution microsampling as well.

EIPE.INENiTAL SECTION

The new technique is based on the discovery that a grounded conduc-

tor, placed below the sample tube of a modified ICP torch, can attract a

stable arc filament from the base of the ICP discharge. The torch and

sample holder assembly used in this preliminary study is illustrated in

Figure 1. The quartz torch differs from conventional ICP torches in
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that its overall length has been reduced to 8.5 cm and that the 4-mm

i.d. central sample tube is flared at the base to form a small bell jar.

The sample gas is introduced tangentially into this bell jar, which is

clamped with a nylon ring to a water-cooled copper base. A viton O-ring

provides a gas-tight seal between the bell jar and the base. A boron-

nitride shield isolates the base thermally and electrically from the

arc. Several different sample holders and configurations were used,

each of which will be described in detail in later sections.

Power w~s supplied to the plasma by a 27.12 MHz, 2.5 kW rf genera-

tor (Model HFP-2500 D with model APCS-I power control and AMN-2500E

impedance matcher, Plasma-Therm Inc., Kresson, NJ). A conventional

three-turn load coil was used. Argon flow rates were 18.0 L/min coolant

gas, 0.9 L/min plasma gas, and 0.9 L/min sample gas. In early studies

the radio-frequency (rf) arc was ignited simultaneously with the ICP by

turning on all gas flows and applying a high-voltage pulse from a Tesla

coil to a metal ring placed around the torch between the base of the

plasma tube and the bell jar. For later experiments the plasma and the

arc were ignited independently; the plasma was lit with the sample gas

turned off and electrical contact between the copper base and ground

broken by a solenoid-actuated, high-voltage switch. Once the plasma had

stabilized, the arc could be lit by turning on the sample gas, grounding

the base, and striking the Tesla coil a second time.

If struck to a thermally stable electrode, the arc has no apparent

effect on the ICP discharge itself except to lower the power delivered

to the fireball. A rough measure of the amount of power being siphoned

from the plasma by the arc was obtained by measuring the continuum

intensity at 300 nm with the arc on at a power of 1.5 kW. The plasma
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was then re-lit with the are off and the power was reduced until the

continuum intensity at 300 nm matched that measured earlier with the arc

on. The match occurred after a reduction in rf power of 140 watts.

The arc was further characterized by measuring with an A.C. current

probe (Tektronix model no. 6022) and oscilloscope the current passing

through the lead connecting the copper base to ground. The oscilloscope

trace revealed the current to be nearly sinusoidal at 27 MHz and to vary

with applied rf power as shown in Figure 2. The difference in Figure 2

between the current measured with a tungsten-pin electrode and that

passed by a copper-cylinder sample is probably due to thermionic emis-

sion and the difference in temperature reached by the two electrodes.

The 0.8-mm tungsten pin had poor thermal contact with the copper heat

sink and glowed white hot. In contrast, the 6-mm copper cylinder re-

mained relatively cool. Thermal emission of electrons from the tungsten

would lower the impedance of the are channel and raise the current. A

surprising result of the current measurements was the discovery of a

substantial current that is present even when the arc is not lit (cf.

Figure 2). This current presumably results from capacitive coupling

between the copper torch base and the water inlet block on the high-

voltage side of the load coil.

RESULTS AND DISCUSSION

The effectiveness of the rf arc as a sampling device was

tested in preliminary experiments on three different types of

samples: metal alloys, non-conducting powders, and microliter

quantities of solutions. Two different detection schemes were

used. In all cases the plasma was imaged with a quartz lens at

unit magnification onto the entrance slit of S 0.35 m monochroma-
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tor (Model EU-700, GCA McPherson, Acton, MA). For the alloys,

the elemental line of interest was located with the aid of a

hollow-cathode lamp. The output of a 1P28A photomultiplier tube,

operated at 800-900 V, was then integrated at each wavelength for

a series of one-second intervals by a digitizing gated integrator

(model 720 VAIADC, Keithley Instruments, Cleveland, OH). The

digitized intensities were stored in a laboratory computer (MINC-

11/03, Digital Equipment Corp., Maynard, MA). For the powders

and solutions the photomultiplier was replaced by a cooled 1024-

element photodiode array (model 1024 S, Reticon Inc., Sunnyvale,

CA) operated as described by Horlick (25).

Aluminum and stainless-steel alloys of the nominal composition

shown in Table I were prepared in the form of 3.2-mm diameter cylinders,

3.2 mm in length. At a plasma forward power of 1.5 kW, the samples

melted within a few seconds of arc ignition. The time-dependent emis-

sion curves from two samples of 2024 aluminum are shown in Figure 3.

From Figure 3, sampling of alloys by the arc appears predominantly

thermal after the first few seconds; the elements appear to distill from

the sample in order of their volatility.

The thermal behavior illustrated in Figure 3 hinders the use of

this new arc sampling technique for quantitative analysis. Problems

such sampling might cause include: 1) the introduction of unusually

large fluxes of matrix or minor-constituent (< 1%) elements into the

plasma, a situation which could result in nonlinearities in plasma

emission, severe line broadening and background shifts (26); 2) delayed

sampling of nonvolatile components with attendantly long analysis times;
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3) the likely need for total sample consumption; and 4) irreproducible

transient signals.

The first of these problems is particularly evident in the time

dependence of Mg emission shown in Figure 3. The peak photocurrent in

trace b is greater than 400 UA (monochromator slits -- 25 jim x 3 mm),

even though Mg comprises only 1.5% of the - 70 mg sample. The sample

introduction rate corresponds approximately to that which would be

achieved by aspirating with an efficient pneumatic nebulizer a 4% Mg

sample solution into the ICP. Figure 4 illustrates the fourth problem;

the time-dependent emission from Cr in 304 stainless steel, sampled by

the RF arc, is extremely erratic and does not reach a steady level even

after 15 minutes.

Because of the above limitations, the rf arc does not in its pre-

sent form appear to be suitable for the general analysis of solid al-

loys. It might, however, be useful for the determination of trace

impurities in relatively pure or consistent alloy matrices.

The next sample type studied, non-conducting powders, required a

different sampling arrangement. For such samples, the best results to

date have been obtained with the sample packed into small graphite cups.

The cups had the same outer dimensions as the metal cylinders described

earlier (3.2 mm dia.), but had a 1.6-mm diameter cavity drilled in one

end. This configuration proved effective for sampling of inorganic

materials, but was unsuitable for samples with high organic content.

Organic-based samples extinguished the rf arc shortly after its igni-

tion.

Sampling and Omission from a non-conducting inorganic powder, NBS

coal fly ash (SRM 1633a) were studied in detail. Spectra were inte-

grated from a 3-mg sample of the fly ash for periods of either 9.2 or
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55.2-seconds by summing 10 or 60 0.92-second integrals from the photo-

diode array. The 9.2-second integrals produced higher signal-to-back-

ground ratios than the 55.2-second integrals, indicating that emission

from the studied elements is most intense during the first few seconds

of the rf arc "burn". This observation was confirmed by monitoring on

an oscilloscope the video output from the diode array as the array was

repetitively read during a burn.

Analysis of the spectra from the coal fly-ash sample was compli-

cated by the detailed spectral background generated by the large amounts

of Fe, S, and Ti which the sample contains. This complicated back-

ground, combined with the limited resolution of the spectrometer (FWHM >

0.5 %), obscured large spectral regions and made positive identification

of several sample constituents impossible. Despite this limitation, a

range of elements was identified, and produced easily detectable signals

even in the spectral regions where the photodiode array is relatively

insensitive (< 300 nm). Table II summarizes the results of a qualita-

tive analysis (9.2-second burn) of the fly-ash sample spectrum.

The results in Table II indicate that the rf arc is capable of

sampling both volatile and refractory elements in the course of a 9.2-

second burn. This observation and the fact that the fly-ash sample is

not totally consumed even after several minutes suggest that processes

other than the thermal distillation observed for the metal alloys are

involved in the sampling of the fly-ash powder.

Clearly, the new method appears to be well suited for the qualita-

tive analysis of powdered inorganic samples. Before it can be used

quantitatively, however, more development is required. In this prelimi-

nary study, the sampling of the fly ash was erratic. Moreover, because
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the sample was not totally consumed during the integration period, the

emission results were not quantitatively reproducible. For example, the

run-to-run variation in the intensity of the Zn 213.8 nm line exceeded

40%.

Using the rf arc for sampling microliter quantities of solution

required further modification of the sample-containment device. For

each run in these liquid-sampling experiments a 1-wl droplet containing

100 ng of Cd was placed on the flat tip of a length of 0.9 mm HB Pentel

graphite pencil lead, employed as a convenient electrode. The sample

droplet was then desolvated by directing at it for 30 sec the output of

a heat gun. A second I I1 droplet, containing 100 rg of Zn, was next

placed on the tip of the pencil lead and similarly desolvated. The

pencil lead was then mounted in place of the tungsten pin used for

previous samples, so that it was anchored in the torch base and extended

above the top of the boron-nitride pedestal into the bell jar chamber

(cf. Figure 1).

The time-dependent emission from the two solution-borne elements

was monitored during a single burn by recording 32 successive 1.85-

second integrals from the photodiode array. The results, plotted in

Figure 5, suggest that both elements are dislodged when the arc is

struck, either by sputtering or mechanical shock. The first readout of

the array after arc ignition registers the most intense Zn and Cd lines.

What follows seems to be thermal evolution similar to that observed with

the direct-sample-insertion techniques (21). Both zinc and cadmium

appear to have nearly volatilized completely after 40 seconds. Presum-

ably, zinc emission remaining after 40 seconds arises from zinc in the

pencil-lead electrode. A subsequent burn of a pencil-lead electrode

without any added sample solution produced zinc emission of intensity

9



comparable to that in Figure 5.

Because liquid samples are totally consumed in the present proce-

dure, the rf-arc measurements are more reproducible than those from

powders or alloys. Measurements of intensities for four runs, each

obtained by averaging thirty 1.85-second integrals from the photodiode

array, yielded a relative standard deviation of 9.8% for the Cd 214.4-nm

line and 19% for the Zn 213.9-nm line. The difference in precision

between the two elements can be attributed to irreproducibility in the

erosion of the zinc-containing pencil-lead substrate. Much of the

remaining imprecision in the intensities can be attributed to factors

other than sampling. For example, droplets were delivered with a micro-

liter syringe with an estimated precision of 2-5%. In addition, the

present rf-arc configuration requires the ICP torch to be removed and

replaced after each burn. Small differences in torch position can have

large effects on the observed emission.

The 100-ng solution samples produced spectra with high signal-to-

noise ratios. For example, the signal-to-noise ratio for the Cd 214.4

nm peak was greater than 250. No effort was made in these measurements

to optimize the viewing region in the plasma for sensitivity. It should

be possible, with some optimization and the use of a photomultiplier

tube, to detect subnanogram quantities of these (and probably other)

elements.

Although the rf arc as a sampling device is clearly not a universal

solution to the problem of introducing solids or small samples into the

ICP, it does show promise for certain samples. It is particularly

appealing in that it is inexpensive and simple. It requires no external

power source and can be easily incorporated as an accessory into an
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existing ICP system. These preliminary results warrant a detailed study

to further probe its capabilities and limitations and to explore its

applicability to a wider range of sample types.
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Table I. Nominal Composition of Several Alloys Used in
Preliminary rf-arc Experiments

Concentrations of
Alloy Alloying Elements(%)

2024 Ai Cu 4.5
Mn 0.6
Ma 1.5

6061 Al Cu 0.25
Si 0.6
Mg 1.0
Cr 0.2

304 Stainless Steel C 0.15
Mn 2.0
P 0.045
S 0.03
Cr 18-20
Ni 8-12
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Table II. Qualitative Analysis of Spectrum from a 3-mg
Sample of NBS SRM 1633 A (Coal Fly Ash),
Volatilized by the rf Arc into a 1.5 kW ICPa

Detected Not Detected

Concentration
Element in Sample Line(s) (nm) Element Concentration

Si 22.8% many Mn 190 ppmbc

Al 14%c  many Ce 180 ppmc
Fe 9.40% many Rb 131 ppm
K 1.88% 766.49 Pb 72.4 ppb

769.90 Ga 58 ppm
Ca 1.11% 393.37 Co 46 ppm c

396.85 Mo 29 ppmc

Ti 0.8%c  many Th 24.7 pgm0

Mg 0.455% 279.55 Be 12 ppm
280.27 U 10.2 ppm

Na 0.17% 589.59 Hf 7.6 ppmc

Ba 0.15%0 230.43 Sb 7 ppm0

233.53 TI 5.7 pgm
V 300 ppmc  310.23 Eu 4 ppm

311.07 Cd 1 ppm
Zn 220 ppm 213.86 Hg 0.16 ppm

206.2
Cr 196 ppm 283.56

205.55
As 145 ppm 193.66
Sr 130 ppm 407.77

421.55
Ni 127 ppm 232.00
Cu 118 ppm 327.40

aAll measurements made 20-22 mm above load coil.

bspectral interferences from other elements on all strong lines.

cThese concentrations not certified; all others are.



FIGURE CAPTIONS

Figure 1. Schematic diagram of torch and sample-stand assembly

used in the rf-arc sampling experiments.

Figure 2. Radio-frequency current from torch base to ground as a

function of applied rf power for an arc to a tungsten

pin (0.8-mm diam.), an arc to a cooled copper cylinder

(6-am diam.) and no arc.

Figure 3. Time-dependent emission from a) Cu 324.8 nm and b) Mg

279.5 nm lines from solid 2024 aluminum alloy sampled

by the rf arc into the ICP. See text for experimental

conditions.

Figure 4. Time-dependent ICP emission from Cr 283.6 nm line

volatilized from 304 stainless steel by the rf arc.

Experimental conditions as for Figure 3.

Figure 5. Time-dependent emission from Zn 213.8 and Cd 214.4 nm

lines. (100 ng solution-based samples placed on tip

of 0.9 m pencil lead, observation zone 15-17 am above

load coil.
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